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Abstract
We provide explicit formulae for the orthogonal eigenfunctions of the
supersymmetric extension of the rational Calogero–Moser–Sutherland model
with harmonic confinement, i.e., the generalized Hermite (or Hi-Jack)
polynomials in superspace. The construction relies on the triangular action of
the Hamiltonian on the supermonomial basis. This translates into determinantal
expressions for the Hamiltonian’s eigenfunctions.

PACS numbers: 02.10.Ox, 02.30.Ik, 03.65.Ge, 11.30.Pb

1. Introduction

The supersymmetric extension of the Calogero–Moser–Sutherland (CMS) model [1] was
obtained some 13 years ago, first in its rational version with confinement [2], and then a few
years later in its trigonometric form [3]. It took more than ten years before a single example
of an eigenfunction (for an arbitrary number of variables) could be displayed for either model
[4], in which case the results relied on a special feature of the rational model, namely the
existence of a transformation to a set of decoupled supersymmetric oscillators.

This slow progress is to be ascribed to the lack of a number of crucial tools: (1) a general
characterization of the symmetry properties of the eigenfunctions; (2) a proper labelling of
the eigenfunctions; (3) knowledge of a simple basis in terms of which the eigenfunctions
could be expanded. It is only quite recently that the relevant tools have been designed [5]. In
that work, a systematic procedure for constructing the eigenfunctions of the supersymmetric
trigonometric (written stCMS) model was presented and a number of solutions were displayed.
In a second step, these results were substantially improved by the explicit construction of
the eigenfunctions [6]. Finally, the way to linearly combine these eigenfunctions so as
to form a set of orthogonal eigenfunctions was given in [7]. The resulting eigenfunctions
were dubbed Jack superpolynomials or equivalently, Jack superpolynomials in superspace.
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The superspace referred to is the Euclidean space of N commuting variables (the usual
‘positions’ in the CMS model) augmented by the N anticommuting variables generated by the
supersymmetrization3.

Having completely solved the trigonometric case, we then turned our attention to the
rational model. A first construction of its eigenfunctions, called the generalized Hermite
superpolynomials, was presented in [9]. It is the supersymmetric extension of Lassalle’s result
[10] in that it relates the generalized Hermite superpolynomial Jω

� to the Jack superpolynomial
J� (where � is a superpartition and ω stands for the confining coefficient, see section 2) through
the relation

Jω
� = e−�/4ωJ�. (1)

Here � is a certain differential operator of degree minus 2 in the commuting variables.
Although very elegant, this construction does not appear, a priori, to be a practical way
of constructing the generalized Hermite superpolynomials. For instance, simply generating
the (ordinary) polynomial Jω

(3,2,1) requires the calculation of �3J(3,2,1). Moreover, this kind
of computation has the disadvantage of depending on the number N of variables in each
of the two sets (commuting and anticommuting). In addition, it does not directly express
the Jω

� in a given basis of symmetric functions, e.g., the supermonomials m� or Jack
polynomials J�.

In this paper, we present a completely different construction of these eigenfunctions. We
essentially apply the scheme used in [6] and thereby obtain explicit expressions for the Jω

� in
terms of supermonomials. This method is exposed in full generality in appendix A (which
can be read independently of this paper). The underlying idea is that there is a road to the
construction of the eigenfunctions whose central step is the solution of a very simple two-body
problem. The motivation for this work was to present a practical construction of the srCMS
model (i.e., free of the previously mentioned drawbacks of the method exposed in [9]) and at
the same time to advertise the power of this general scheme.

The paper is organized as follows. We first review briefly some (super)material needed for
our construction. In section 3, we evaluate the action of the Hamiltonian on the supermonomial
basis m�. The calculation is broken down into two parts: we first evaluate the action of the
Hamiltonian in the one- or two-particle sector (the former case taking care of the diagonal part
of the Hamiltonian) and then extend the result to a general number of particles by adding the
right symmetry factors. Breaking down the computation in this manner is obviously the only
way of unravelling a clear pattern for the action of the Hamiltonian on the supermonomials
and, in the end, for the triangular decomposition of the generalized Hermite superpolynomials
in terms of Jack superpolynomials. Each coefficient c�,� can thus be written as a sum of
terms, each dressed by their respective symmetry factor.

Once the action of srCMS Hamiltonian on the supermonomials is completely fixed,
all the data necessary for computing the generalized Hermite superpolynomials are known.
In section 4, we end up with a tri-determinantal expression for generalized Hermite
superpolynomials in terms of the supermonomials. We stress that even in the zero-fermion
sector, the resulting expressions are new (albeit implicit in [10]).4

Appendix B completes the paper by providing the determinantal formulae related to the
Jack superpolynomials. From a computational viewpoint, this essentially summarizes the
results obtained in [6, 7].

3 These works are surveyed in [8].
4 For more details concerning the generalized Hermite polynomials without fermions, see also [11, 12].
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2. Definitions

The supersymmetric gauge transformed Hamiltonian of the srCMS model [2] reads

H = 2ω

N∑
i=1

(
xi∂i + θi∂θi

) −
N∑

i=1

∂2
i − 2β

∑
1�i<j�N

1

xij

(∂i − ∂j ) + 2β
∑

1�i<j�N

1

x2
ij

(
θij θ

†
ij

)
(2)

where

∂i = ∂xi
xij = xi − xj θij = θi − θj and θ

†
ij = ∂θi

− ∂θj
. (3)

The θi , with i = 1, . . . , N , are anticommuting (Grassmannian or fermionic) variables. The
commuting (bosonic) variables xj as well as the parameters β and ω belong to the real field.
It is easy to verify that the term 1 − θij θ

†
ij is a fermionic exchange operator [3]

κij ≡ 1 − θij θ
†
ij = 1 − (θi − θj )

(
∂θi

− ∂θj

)
(4)

whose action on a function f (θi, θj ) is

κijf (θi, θj ) = f (θj , θi)κij . (5)

The Hamiltonian H is Hermitian with respect to the following ‘physical scalar product’:

〈F(x, θ),G(x, θ)〉β,ω =
∏
j

(∫ ∞

−∞
dxj

∫
dθj θj

) ∏
k�l

|xkl|2β e−ω‖x‖2
F(x, θ)∗G(x, θ) (6)

where F and G are arbitrary functions and ‖x‖2 = ∑
i x

2
i . The complex conjugation * is

defined such that(
θi1 · · · θim

)∗
θi1 · · · θim = 1 and x∗

j = xj . (7)

In other words, θ∗
j behaves as θ

†
j = ∂θj

. The integration over the Grassmannian variables is
the standard Berezin integration, i.e.,∫

dθ = 0
∫

dθ θ = 1. (8)

The Hamiltonian H preserves the space, P SN , of symmetric superpolynomials invariant
under the simultaneous action of κij and Kij , where Kij is the exchange operator acting on
the xi variables:

Kijf (xi, xj ) = f (xj , xi)Kij . (9)

A polynomial f thus belongs to P SN if it is invariant under the action of the product

Kij = κijKij (10)

that is, if Kij f = f for all i, j .
The appropriate labelling for symmetric superpolynomials is provided by superpartitions

[5]. We recall that a superpartition � in the m-fermion sector is a sequence of non-negative
integers composed of two standard partitions separated by a semicolon

� = (�a;�s) = (�1, . . . , �m;�m+1, . . . , �N) (11)

where �i > �i+1 � 0 for i = 1, . . . , m − 1 and �j � �j+1 � 0 for j = m + 1, . . . , N − 1.
In the zero-fermion sector, the semicolon is usually omitted and � reduces then to �s . We
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denote the degree of a superpartition and its fermionic number, respectively, by

|�| =
N∑

i=1

�i and � = m. (12)

The partition rearrangement in non-increasing order of the entries of � is denoted
by �∗.

This allows us to define dominance (partial) ordering on superpartitions. We recall
the usual dominance ordering on two partitions λ and µ of the same degree: λ � µ iff
λ1 + · · · + λk � µ1 + · · · + µk for all k. The dominance ordering on superpartitions is similar:

� � � if either �∗ < �∗ or �∗ = �∗ and �1 + · · · + �k � �1 + · · · + �k ∀ k.

(13)

We now furnish two fundamental bases in the space P SN . The simplest one is the
monomial basis, denoted by {m�}�, with m� ≡ m�(x, θ) a superanalogue of a monomial
symmetric function defined as follows [5]:

m� =
∑
σ∈SN

′
θσ(1,...,m)xσ(�) (14)

where the prime indicates that the summation is restricted to distinct terms, and where

xσ(�) = x
�σ(1)

1 · · · x�σ(m)

m x
�σ(m+1)

m+1 · · · x�σ(N)

N and θσ(1,...,m) = θσ(1) · · · θσ(m). (15)

Equivalently, we can define the supermonomials as

m� = 1

f�

∑
σ∈SN

Kσ

(
θ1 · · · θmx�

)
f� = f�s = n�s (0)!n�s (1)!n�s (2)! · · · (16)

where n�s (i) indicates the number of i in �s , the symmetric part of � = (�a;�s) and Kσ

stands for Ki1,i1+1 · · ·Kin,in+1 when the element σ of the symmetric group SN is written in terms
of elementary transpositions, i.e., σ = σi1 · · · σin .

The second basis, denoted by {J�}�, is that of the superanalogues of the Jack
polynomials [7]. These superpolynomials are orthogonal and triangular eigenfunctions of
the gauged stCMS Hamiltonian H2. More precisely, the Jack polynomials in superspace
J� ≡ J�(x, θ; 1/β) are the unique functions in P SN such that

J� = m� +
∑
�<�

t�,�(β)m� and 〈J�, J�〉β ∝ δ�,� (17)

where the physical scalar product of the stCMS model is defined by

〈A(x, θ), B(x, θ)〉β =
∏
j

(
1

2π i

∮
dxj

xj

∫
dθj θj

) 
∏

k �=l

(
1 − xk

xl

)β

A(x, θ)∗B(x, θ)


 .

(18)

The variable xj represents the j th particle’s position on the unit circle in the complex plane,
and is thus such that x∗

j = 1/xj .
We finally give two distinct types of eigenfunctions of the srCMS Hamiltonian H: the

non-homogenous supermonomials mω
� and the generalized Hermite superpolynomials Jω

� [9].
They are ‘ω-deformations’ of the supermonomials and the Jack superpolynomials, respectively,
in the sense that

lim
ω→∞ mω

� = m� and lim
ω→∞ Jω

� = J�. (19)
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The set of superpolynomials
{
mω

�

}
�

, where mω
� = m�(x, θ;β, ω), is the unique basis of P SN

satisfying

mω
� = m� +

∑
�<u�

y��(β, ω,N)m� and Hmω
� = 2ω(|�| + �)mω

� (20)

where the u-ordering is such that

� �u � if either � = � or |�| = |�| − 2n (21)

for n = 1, 2, 3, . . . . Note that we compare superpartitions belonging to the same fermionic
sector, i.e., such that � = �. Similarly, the generalized Hermite polynomials Jω

� ≡
J�(x, θ; 1/β, ω) form the unique basis of P SN satisfying

Jω
� = J� +

∑
�<u�

w��(β, ω,N)J� and HJω
� = 2ω(|�| + �)Jω

�. (22)

However, in contradistinction with the mω
�, the Jω

� are also orthogonal. Actually,
{
Jω

�

}
�

is the
only basis in P SN having the following two properties [9]:

Jω
� = J� +

∑
�<u�

w��(β, ω,N)J� and
〈
Jω

�, Jω
�

〉
β,ω

∝ δ�,� (23)

with 〈 , 〉β,ω defined in (6).
The explicit form of the eigenfunctions mω

� and Jω
� will be obtained in the following two

sections.

3. Action of the srCMS Hamiltonian on supermonomials

We want to compute the coefficients c�� in the development

Hm� = e�m� +
∑

�<v�

c��m� (24)

in terms of the ordering �v to be introduced in the following subsection.
Proceeding as in [6], we divide the calculation of Hm� into two parts. We first treat the

special cases N = 1, 2. The central role played by the one-particle and two-particle sectors is
rooted in the fundamental observation that the Hamiltonian is a sum of one- and two-particle
interactions. This computation will provide the core of the coefficient c��(β, ω) appearing in
(24). The consideration of the case N > 2 will only dress them by symmetry factors.

To simplify the calculations, we introduce the following notation:

H = 2ωA − (B + 2βC) (25)

where

A =
∑

i

Ai =
∑

i

(
xi∂i + θi∂θi

)
B =

∑
i

Bi =
∑

i

∂2
i (26)

and

C =
∑
i<j

Cij =
∑
i<j

[
1

xij

(∂i − ∂j ) − 1

x2
ij

(1 − κij )

]
. (27)

Only the term A has a diagonal part. Its action is easily computed for all N:

2ωAm� = e�m� = 2ω(|�| + �)m�. (28)
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3.1. Action of the operator B; the Ui ladder operator

The operator B acts trivially on one-particle supermonomials m(;r) = m(r) = xr
1 and

m(r;) = θ1x
r
1:

B1m[r] = r(r − 1)m[r−2] (29)

where [r] stands for ( ; r) or (r; ).
We translate the action of Bi on the supermonomial m� into that of a ladder operator Ui

acting on the superpartition � as

Ui� = Ui(�1, . . . , �i, . . . , �N) = (�1, . . . , �i − 2, . . . , �N). (30)

We will denote by sgn
(
σa

Ui�

)
the sign of the permutation σa

Ui�
needed to reorder the entries of

Ui� (on the antisymmetric side) in order to have a superpartition: Ui� = σa
Ui�

(Ui�). Note
that �i can either be part of �a or �s , but a sign can only arise if �i ∈ �a .

Since |Ui�| = |�| − 2, successive applications of the Ui operators on a given
superpartition generate a specialization of the u-ordering (see equation (21))

if � = Ui1 · · ·Uin� for some i1, . . . , in then � �u �. (31)

In the general case of N � 2, we have

Bm� =
∑

�;�=Ui�

d��m� (32)

where the sum is taken only over the different superpartitions � = Ui�, and

d�� =
{

�i(�i − 1)sgn
(
σa

Ui�

)
if i ∈ {1, . . . , m}

�i(�i − 1)n�s (�i − 2) if i ∈ {m + 1, . . . , N}. (33)

Here n�s (�i − 2) is a symmetry factor (recall that n�s (a) gives the number of a in �s). This
non-trivial coefficient is determined using calculations similar to those presented in section 4.2
of [6]. It corresponds to f�#(�,�)/f�, where #(�,�) denotes the number of distinct ways
we can choose i such that � = Ui� and f� is the monomial coefficient defined in equation (16).
For instance, if � = (0; 2, 1) then � = U2(0; 2, 1) = (0; 1) has a symmetry factor
f�#(�,�)/f� = (N − 2)! · 1/(N − 1)! = (N − 2), so d(0;2,1)(0;1) = 2(N − 2).

3.2. Action of the operator C in the two-particle sector

The operator C contains the two-body interaction terms of the Hamiltonian. To compute its
action in the two-particle sector, we need to distinguish three cases, characterized by their
different fermionic sector.

Case I. In this case, the fermionic number is two and the supermonomial to be considered is
m(r,s;0):

m(r,s;0) = 1

f(r,s;0)

(1 + K12)θ1θ2x
r
1x

s
2 = θ1θ2

(
xr

1x
s
2 − xs

1x
r
2

)
(34)

for r > s. For the action of C, a direct computation yields

C12m(r,s;0) = θ1θ2

x12
(x1x2)

s−1
{
r
(
xr−s

1 x2 + x1x
r−s
2

) − s
(
xr−s+1

1 + xr−s+1
2

)
− 2

(
xr−s

1 x2 + xr−s−1
1 x2

2 + · · · + x1x
r−s
2

)}
. (35)
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To proceed further, we use the following identity:5{
r
(
xr−s

1 x2 + x1x
r−s
2

) − s
(
xr−s+1

1 + xr−s+1
2

) − 2
(
xr−s

1 x2 + xr−s−1
1 x2

2 + · · · + x1x
r−s
2

)}
= x12

{
−s

(
xr−s

1 − xr−s
2

)
+

(r−s−1)/2�∑
=1

(r − s − 2)
(
xr−s−

1 x
2 − x

1x
r−s−
2

)}
. (36)

We then get

Cm(r,s;0) = C12m(r,s;0) = −sm(r−1,s−1;0) +
(r−s−1)/2�∑

=1

(r − s − 2)m(r−1−,s−1+;0). (37)

Case II. In this case, we work in the one-fermion sector with m(r;s):

m(r;s) = 1

f(r;s)
(1 + K12)θ1x

r
1x

s
2 = θ1x

r
1x

s
2 + θ2x

s
1x

r
2 (38)

(since f(r;s) = 1). Consider the action of C on m(r;s), supposing first that r > s. We get

C12m(r;s) = 1

x12
(x1x2)

s−1[θ1
(
rxr−s

1 x2 − sxr−s+1
1

) − θ2
(
rx1x

r−s
2 − sxr−s+1

2

)
− θ12

(
xr−s

1 x2 + xr−s−1
1 x2

2 + · · · + x1x
r−s
2

)]
. (39)

We now focus on the θ1 term:

C12m(r;s)
∣∣
θ1

= θ1

x12
(x1x2)

s−1
{
rxr−s

1 x2 − sxr−s+1
1 − (

xr−s
1 x2 + · · · + x1x

r−s
2

)}
. (40)

A factor x12 can again be factorized from the curly bracket, which can be seen using the
identity{
rxr−s

1 x2 − sxr−s+1
1 − (

xr−s
1 x2 + · · · + x1x

r−s
2

)}
= x12

{
−sxr−s

1 +
r−s−1∑
=1

(r − s − )xr−s−
1 x

2

}
. (41)

Reinserting the θ2 terms (by symmetry), we have

Cm(r;s) = C12m(r;s) = −sm(r−1;s−1) +
r−s−1∑
=1

(r − s − )m(r−1−;s−1+) (r > s). (42)

The derivation in the case r < s is similar, with the role of the parts r and s interchanged:

Cm(r;s) = C12m(r;s) = −rm(r−1;s−1) +
s−r−1∑
=1

(s − r − )m(r−1+;s−1−) (r < s). (43)

Here, no reordering of the partition is required. The r = s case is trivial:

Cm(r;r) = C12m(r;r) = −rm(r−1;r−1). (44)

5 Similar identities are presented in [6]. Identity (36) can be proved along the same lines. The way such identities are
found is rather simple however. The idea is to add an appropriate monomial to each monomial treated successively
in order to be able to extract a factor x12. For instance, for the monomial with the leading power of x1, we have
−sxr−s+1

1 = −s[xr−s
1 x12 + xr−s

1 x2]. We then collect all other terms of the form xr−s
1 x2 in our original expression,

add them to the newly produced −sxr−s
1 x2 and proceed similarly to enforce the factorization of x12.
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Case III. This case corresponds to the zero-fermion sector. We set � = (; r, s) = (r, s), so
that

m(r,s) = 1

f(r,s)

(1 + K12)x
r
1x

s
2 = 1

f(r,s)

(
xr

1x
s
2 + xs

1x
r
2

)
. (45)

Consider first the case where r > s, so that f(r,s) = 1. Since the action of 1 − κ12 vanishes in
the absence of θ terms, the action of C12 is simply

Cm(r,s) = C12m(r,s) = r

r−s−2∑
=0

xr−2−
1 xs+

2 − s

r−s∑
=0

xr−1−
1 xs−1+

2

= r

(r−s−2)/2�∑
=0

m(r−2−,s+) − s

(r−s)/2�∑
=0

m(r−1−,s−1+)

= −smr−1,s−1 + (r − s)

(r−s)/2�∑
=1

m(r−1−,s−1+). (46)

For r = s, we find exactly the same expression. Note that in reading the result, we must set
m(r ′,s ′) = 0 if one label is negative.

3.3. Summarizing the action of C; the V
()
ij ladder operator

Before giving the general action of C, let us introduce the following nomenclature for a pair
(i, j) of indices associated with a superpartition �:

type I : if i, j ∈ {1, . . . , m}
type II : if i ∈ {1, . . . , m}, j ∈ {m + 1, . . . , N}
type III : if i, j ∈ {m + 1, . . . , N}

(47)

where m = � is the fermionic sector.
If we denote generically by m[r,s] the N = 2 monomial appropriate to each of the three

cases, we have obtained

Cm[r,s] =
�r,s∑
=0

[(1 − δ,0) max(r, s) − min(r, s) − η]m[r−1−ε,s−1+ε] (48)

where ε = sgn(r − s),

�r,s =



 r−s−1
2 � for type I

max(|r − s| − 1, 0) for type II
 r−s

2 � for type III
(49)

and

η =




2 for (i, j) of type I

1 for (i, j) of type II

0 for (i, j) of type III

. (50)

The action of the operator C on supermonomials can be decomposed into three factors: a
numerical prefactor (computed in the N = 2 sector), a symmetry factor (see below) and the
action of a second ladder operator V

()
ij acting on superpartitions. Its action is analogous to
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that of the S
()
ij operator, presented in appendix A, pertaining to the description of the Jack

superpolynomials. For i < j , it is defined only for 0 �  � ��i�j
, in which case

V
()
ij � = V

()
ij (�1, . . . , �i, . . . , �j , . . .) = (�1, . . . , �i − 1 − ε, . . . , �j − 1 + ε, . . .)

(51)

where ε is now given by

ε = sgn(�i − �j). (52)

Note that here, in contradistinction with the action of the operator S
()
ij , the number  can be

zero. The possible sign resulting from the reordering of V
()
ij � will be written as sgn

(
σa

V
()
ij �

)
.

We now take into account the symmetry factors. They have been evaluated in section 4.2
of [6] for the case of Jack superpolynomials. However, such symmetry factors are universal:
they can be used for any ladder operator L

ij whose action on a superpartition � is given by
(�1, . . . , �i ± a − ε, . . . , �j ± a + ε, . . .) where a is a positive integer. Consequently,
combining the N = 2 contribution (48) and the known symmetry factors, we get

Cm� =
∑
�

e��m� e�� =
∑

(i,j) distinct; V
()
ij �=�

ẽ
�,V

()
ij �

(53)

where

ẽ
�,V

()
ij �

= [max(�i,�j )(1 − δ,0) − min(�i,�j ) − η]n(�i − 1 − ε,�j − 1 + ε). (54)

The parameter η is defined in (50) and n(a, b) is given by

n(a, b) =




1 for i, j of type I

n�s (b) for i, j of type II

n�s (a)n�s (b) for i, j of type III and a �= b

1
2n�s (a)(n�s (a) − 1) for i, j of type III and a = b

(55)

where, as before, n�s (i) denotes the number of i in �s , the symmetric part of � = V
()
ij �.

In (53), we say that (i, j) and (i ′, j ′) are distinct if (�i,�j ) �= (�i ′ ,�j ′) or if �i and �i ′

belong to different constituent partitions �a or �s . The sum over the pairs (i, j) is required
by the fact that a given term can be obtained in different ways, some of them associated
with different symmetry factors. For example, let the initial and final superpartitions be
� = (0; 2, 1) and � = (0; 1), respectively. Three distinct pairs (i, j) contribute in (53):
(1, 2) for  = 1, (2, 3) for  = 0 and (2, 4) for  = 1. Formulae (54) and (55) yield directly

ẽ
�,V

(1)
12 �

= (N − 2) ẽ
�,V

(0)
23 �

= −(N − 2) ẽ
�,V

(1)
24 �

= (N − 2)(N − 3) (56)

so that

Cm(0;2,1) = (N − 2)(N − 3)m(0;1). (57)

In addition, this is also an example for which � is linked to � by the ‘one-body ladder operator’
U2, cf the example at the end of section 3.1.

We stress that this pattern for the action of C, which describes the interacting part of
the Hamiltonian, would have been impossible to unravel without going through the N = 2
analysis.
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3.4. Complete action of the Hamiltonian; the v-ordering

Combining the above expressions for the action of A, B and C, we get the following compact
expression for the action of the Hamiltonian:

Hm� = 2ω(|�| + �)m� −
∑

�;�=Ui�

d��m� − 2β
∑

�;�=V
()
ij �

e��m� (58)

where the coefficients d�,� and e�,� are given by (33) and (53), (54), respectively.
The action of the srCMS Hamiltonian on the supermonomial basis induces a particular

ordering on superpartitions that enters in the triangular decomposition of the generalized
Hermite polynomials. Let us denote this ordering as �v . We have seen that the action of
Hω on m� is triangular and that the ‘lower-order’ superpartitions are simply those such that

� = Ui� or � = V
()
ij � for some i, j . In the triangular decomposition of Hω on m�, only

terms obtained by one application of either Ui or V
()
ij can appear. It is thus natural to define

the v-ordering �v in terms of multiple applications of these operators:

� �v � iff � = VI1 . . . VIn
� (59)

for a given sequence VI1 , . . . , VIn
, where VIk

stands for the ladder operator Uik or V
(k)
ikjk

.

Again, the combined action of ladder operators Ui and V
()
ij on a superpartition � decreases

the weight |�|. This means that the v-ordering furnishes another refinement of the u-ordering:

if � �v � then � �u �. (60)

To summarize, the action of H is triangular in the supermonomial basis {m�}�:

Hm� = 2ω(|�| + �)m� +
∑

�<v�

c��(β, ω,N)m� (61)

with ∑
�<v�

c��(β, ω,N)m� = −
∑
�;

�=Ui�

d��m�−2β
∑
�

∑
(i,j)distinct;
�=V

()
ij �

ẽ
�,V

()
ij �

m�.(62)

Note that two superpartitions such that � <v � have distinct eigenvalues, that is, e� �= e�

since |�| < |�| in that case. This property is essential when writing the eigenfunctions as
determinants.

4. Determinantal formulae

The preceding section contains three essential properties concerning the action of the
Hamiltonian H on a generic supermonomial m�:

1. it is finite;
2. it is triangular with respect to the v-ordering ;
3. the coefficient c�� of the monomial m� appearing in the development (61) is known, that

is, it can be computed via (33) and (53)–(54).

Thus, it is possible to construct an eigenfunction of H that has the following triangular form:

m� +
∑

�<v�

w��(β, ω,N)m�. (63)

But, by virtue of equations (20) and (60), this function must be the very superpolynomial mω
�.

Moreover, the triangularity together with the property � <v � ⇒ e� �= e� allows us to write
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the eigenfunction mω
� as a determinant. More precisely, using arguments similar to those in

[15], we get the following two results.

Theorem 1. Let �(1) ≺v �(2) ≺v · · · ≺v �(n) = �, where ≺v is a total ordering
compatible with <v . Then the Hamiltonian H has a triangular eigenfunction mω

� of eigenvalue
e� = 2ω(|�| + �) that is given by the following determinant:

mω
� = W�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m�(1) m�(2) · · · · · · m�(n−1) m�(n)

e
(1)
� − e

(n)
� c�(2)�(1) · · · · · · c�(n−1)�(1) c�(n)�(1)

0 e
(2)
� − e

(n)
� · · · · · · c�(n−1)�(2) c�(n)�(2)

... 0
. . .

...
...

...
...

. . .
. . .

...

0 0 · · · 0 e
(n−1)
� − e

(n)
� c�(n)�(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(64)

where the ‘weight’ constant of proportionality is

W� = (−1)n−1
n−1∏
i=1

1

e
(i)
� − e

(n)
�

. (65)

Corollary 2. Let �(1) ≺v �(2) ≺v · · · ≺v �(n) = �, where ≺v is a total ordering compatible
with <v . Then

mω
� =

n∑
k=1

w��(k) (β, ω,N)m�(k) (66)

where w��(n) = w�� = 1, and where the coefficients w��(k) for 1 < k � n satisfy the
following recursion formula:

w��(k−1) = 1

e� − e
(k−1)
�

n∑
=k

w��()c�()�(k−1) . (67)

However, the eigenfunctions mω
� are not orthogonal with respect to the scalar product

〈 , 〉β,ω. Furthermore, in the zero-fermion sector, the dominant term in mω
� = m� +∑

�<v�
w��m� is not the Jack polynomial J�. Consequently, the function mω

� cannot be
the sought for generalized Hermite polynomial Jω

� . The appropriate way of constructing the
generalized Hermite polynomials in superspace is however obvious at this point: linearly
combine the eigenfunctions mω

� sharing the same weight |�| in such a way that the Jack
superpolynomial J� is the term of homogeneous degree |�| of this linear combination.

Theorem 3. Let � be the dominance ordering on superpartitions (cf equation (13), and t��

be the coefficient of m� in the development of the Jack polynomial J� given in equation (17).
Then, the generalized Hermite polynomial in superspace Jω

� reads

Jω
� = mω

� +
∑
�<�

t��(β)mω
�. (68)

Proof. First, it is obvious that expression (68) defines an eigenfunction of the Hamiltonian H
with eigenvalue 2ω(|�| + �). Secondly, let us recall that the generalized Hermite
superpolynomials Jω

� are the unique eigenfunctions of H in superspace such that
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(cf equation (22)) Jω
� = J� +

∑
�<u�

w��J�. But equations (68), (17) and (21) also imply that

mω
� +

∑
�<�

t��(β)mω
� = J� +

∑
�<u�

t̃��(β, ω,N)J� (69)

for some coefficient t̃�� . Thus, from the uniqueness property, mω
� +

∑
�<� t�,�mω

� must be
the generalized Hermite superpolynomial Jω

� . �
Equation (68) can be interpreted as a ‘tri-determinantal’ formula of the generalized

Hermite polynomials in terms of the supermonomials m�. Why? Because the coefficients
t�� come from determinants (92) and (94) while the coefficients w�� are obtained from
determinant (64). From the computational point of view, this means that, when the monomial
decomposition of a Jack superpolynomial J� is known (using a bi-determinantal formula), we
get the exact expression of Jω

� in the monomial basis by developing the mω
� in (68) via the

determinantal formula (64).
Before concluding this paper, it might be of interest to present an example. Let us compute

Jω
(0;2,1) in terms of the Jack superpolynomials using the determinantal formulae. Tables 1 and

2 in [7] (or the determinantal formulae in appendix A) give the Jack superpolynomial

J(0;2,1) = m(0;2,1) +
2β

1 + 2β
m(1;12) +

6β

1 + 2β
m(0;13). (70)

Theorem 3 tells us that the generalized Hermite superpolynomial associated with � = (0; 2, 1)

is simply

Jω
(0;2,1) = mω

(0;2,1) +
2β

1 + 2β
mω

(1;12)
+

6β

1 + 2β
mω

(0;13)
. (71)

We next compute the eigenfunctions mω
(0;2,1), mω

(1;12)
and mω

(0;13)
in the supermonomial basis

using theorem 1. Direct calculations give

mω
(0;2,1) = m(0;2,1) − (N − 2)[1 + β(N − 3)]

2ω
m(0;1)

mω
(1;12)

= m(1;12) +
β(N − 2)

2ω
m(0;1) +

β(N − 1)(N − 2)

4ω
m(1;0)

mω
(0;13)

= m(0;13) +
β(N − 2)(N − 3)

4ω
m(0;1) (72)

mω
(1;0) = m(1;0) = J(1;0) − β

1 + β
J(0;1)

mω
(0;1) = m(0;1) = J(0;1).

Substituting these expansions into (71) leads to the decomposition of Jω
(0;2,1) in the undeformed

supermonomial basis. Although we have not derived in general the explicit form of the
decomposition in terms of Jack superpolynomials, in this special case it can be easily checked
to read

Jω
(0;2,1) = J(0;2,1) +

β2(N − 1)(N − 2)

2ω(1 + 2β)
J(1;0) − (N − 2)(1 + Nβ)

2ω(1 + β)(1 + 2β)
J(0;1). (73)

5. Conclusion

We have expressed the generalized Hermite superpolynomials, the eigenfunctions of the
srCMS model, in determinantal form. This amounts to writing them in terms of the deformed
supermonomial basis as

Jω
� = mω

� +
∑
�<�

t��(β)mω
� (74)
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with known coefficients. Note that in this decomposition, all the dependence on N comes from
the mω

�. This nevertheless implies that, in contradistinction with the Jack superpolynomials,
the dependence on N is inherent in the generalized Hermite superpolynomials. In other
words, the Jω

� are not stable with respect to the number of variables.6

The somewhat complicated form of the expressions resulting from this construction should
not cast a shadow over the fact that all eigenfunctions of the srCMS model are thereby obtained
in an explicit way.
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Appendix A. A general scheme for the explicit construction of the eigenfunctions

A large class of generalized orthogonal symmetric functions can be characterized by an
eigenvalue problem of the Calogero–Moser–Sutherland (CMS) type. More precisely, these
multi-variable polynomials are eigenfunctions of a gauged CMS Hamiltonian H, where the
gauge transformation refers to the removal of the ground-state wavefunction ψ0 from the
genuine CMS Hamiltonian H via the conjugation H = ψ0Hψ−1

0 . A crucial property of H is
that it can be broken up as a sum of one- or two-body interaction terms, i.e., as

H =
N∑

i,j=1

Hij =
N∑

i,j=1

[
H(1)

ij + H(2)
ij + · · · ] (75)

with N the number of interacting particles. Here H(p)

ij could be a diagonal term (e.g., a kinetic
energy term) or more generally a single-body term, in which case it would be proportional to
δij , or an interaction term, in which case H(p)

ij ∝ (1 − δij ).
There is a systematic scheme for constructing explicitly the eigenfunctions of H that

also provides closed-form expressions. By an explicit construction, we refer to the complete
specification of the expansion coefficients of the sought for eigenfunctions in a prescribed
basis, typically the basis of monomial symmetric functions mλ, where λ is a partition. More
precisely, we look for eigenfunctions Pλ of the form

Pλ = mλ +
∑
µ<λ

αλ,µmµ (76)

that is, triangular with respect to a certain ordering on partitions and normalized such that
αλ,λ = 1. In short, the explicit construction of Pλ refers to the determination of the coefficients
αλ,µ.

This scheme relies heavily on the intrinsic two-body nature of the CMS interaction. The
first step amounts to treating the N = 2 problem and evaluating explicitly the action of H12

on a generic (two-part) monomial function mλ = m(r,s) (r = λ1, s = λ2):

H12m(r,s) =
∑

p

H(p)

12 m(r,s) = ε(r,s)m(r,s) +
∑

(r ′,s ′)�=(r,s)

∑
p

c
(p)

(r,s),(r ′,s ′)m(r ′,s ′). (77)

6 See also example (73) which expresses a special Jω
� in the J� basis; in that case, the N-dependence is completely

captured by the coefficients.
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In the CMS case, the action actually turns out to be triangular: the ordering < on partitions
with two entries being fixed such that (r ′, s ′) < (r, s) when (r ′, s ′) appears in the sum.

Actually, to each element H(p)

12 in the decomposition of H12 corresponds a ladder
(lowering) operator L(p)

12 acting on partitions. To be more precise, to any m(r ′,s ′) appearing in
H12m(r,s) there corresponds a ladder operator that acts on the partition (r, s) to produce (r ′, s ′).
The ordering governing the triangular decomposition can thus be defined precisely as follows:
(r ′, s ′) < (r, s) if there is a ladder operator L(p)

12 such that (r ′, s ′) = L(p)

12 (r, s).
This first step which consists in solving the N = 2 case, even though clearly model

dependent, is usually rather straightforward. The second step now amounts to extending this
result from N = 2 to a general N, that is, to obtaining explicitly

Hmλ = ελmλ +
∑
µ<λ

cλ,µmµ. (78)

The computation of the diagonal coefficient ελ is normally quite simple. The main technical
difficulty lies in the determination of the non-diagonal coefficients cλ,µ. The key point is
that all the monomials mµ that appear in this expansion can be traced back to an underlying
two-body interaction. In other words, a partition µ such that cλ,µ �= 0 differs from λ in at
most two of its entries, say the ith and j th ones. This implies that cλ,µ is determined by the
corresponding two-body coefficient c

(p)

(λi ,λj ),(µi ,µj )
up to a symmetry factor a

(p)
µ :

cλ,µ =
∑

p

a(p)
µ c

(p)

(λi ,λj ),(µi ,µj )
. (79)

This symmetry factor a
(p)
µ is characteristic of the generic form of H(p)

ij , that is, whether it is
a single- or two-body term. It takes care of the different ways we can relate λ to µ; it is thus
a purely combinatorial factor, solely determined by the multiplicity of the part µi in µ if it is
related to a diagonal term, or the multiplicity of both µi and µj for a genuine interaction term.
In that sense, the symmetry factors are universal, i.e., independent of the precise form of the
Hamiltonian H.7

After the completion of these first two steps, the action of Hmλ is known. The third
step amounts to a direct construction of the eigenfunctions Pλ in the form of a determinant
involving the following entries: mλ, ελ and cλ,µ. By expanding the determinant, we obtain
the decomposition (76) with all αλ,µ determined. The sum runs now over all µ < λ, where the
ordering governing this triangular decomposition is precisely the ordering that underlies the
decomposition of Hmλ (in the sense that we say µ < λ if mµ appears in Hnmλ, for a certain
value of n).

The general scheme is thus quite simple in principle and totally constructive. Explicit
eigenfunctions can be worked out in this way without requiring previous knowledge of anything
more than the monomial basis. Examples of orthogonal polynomial that can be computed
in this way include the Jack polynomials and the generalized Hermite, Jacobi and Laguerre
polynomials. For Jack polynomials, eigenfunctions of the trigonometric CMS (tCMS) model,
the above procedure is particularly simple because there is a single two-body term in the
Hamiltonian that contributes to the coefficient cλ,µ and also a single overall symmetry factor.
7 To be more precise, let us stress that in general, we may also have to sum over pairs (λi , λj ) that are combinatorially
distinct in the sense of belonging to separate families, each of which giving rise to different symmetry factors (see
the paragraph following (55) for an explicit example). However, the families are only determined by the structure
of the partitions involved (the superpartitions in the case treated in this paper), and it thus remains true that the
combinatorial factor is independent of the structure of the Hamiltonian. Note that the case we consider in this paper
captures the full complexity of the generic situation described above in that a given monomial term m� occurring in
the decomposition of Hm� can be related to two different pieces of the two-body Hamiltonian, or to combinatorially
distinct pairs (λi , λj ) associated with a given two-body term.
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It is difficult to trace back the precise origin of this scheme in the literature. To our
knowledge, its ‘history’ goes as follows. For Jack polynomials Jλ, it appears implicitly in
Macdonald’s book [13]. In particular, the action of Hmλ is given in example 3(c) of section
VI.4 p 327. In this expression we can recognize the two-body decomposition but there is
no emphasis on the symmetry factor, which is hidden in the form of a summation. Therein,
the following example 3(d ) displays a recursion formula for the coefficients αλ,µ that can
also be deduced from the determinantal expression of Jλ. The expression of Hmλ for the
tCMS model, using the idea of first computing the two-body case and then lifting the result
by a symmetry factor is due to Sogo [14] (but given without proof). The completion of the
programme by displaying the explicit determinantal expression for the eigenfunctions (in this
case, the Jack polynomials) was first done in [15]. Furthermore, the extension to all root
systems was considered in [16].

The first explicit formulation of the above complete scheme appears to be that of [6]
(see also sections 3.6–3.8 of [8]), where it was applied to the construction of the Jack
superpolynomials, defined to be eigenfunctions of the supersymmetric version of the tCSM
model [5].

In the absence of supersymmetry, the above construction leads directly to orthogonal
polynomials. Indeed, eigenfunctions of H turn out to be also eigenfunctions of a whole
tower of commuting charges {Hn}, for n = 1, 2, . . . , N (where H2 = H), since these charges
also act triangularly on the monomial basis with respect to the same ordering. However, in
the supercase, it is not guaranteed that the superpolynomials, denoted by P�, constructed
along this scheme will be orthogonal. And actually, this is usually not the case. But the
way one should linearly combine the P� to form orthogonal superpolynomials is suggested
by the integrability structure of the underlying physical problem. It is indeed rooted in the
fact that the supersymmetric extension of any CMS model has twice as many commuting
conserved charges as its corresponding non-supersymmetric version. In other words, there
is an additional tower of N conserved charges {In} (which vanish when the anticommuting
variables are set equal to zero). One thus needs to iterate the procedure one step further: take
a representative among this new set of conserved charge (in its gauged form) to play the role
of H and replace m� (the supermonomial) by the eigenfunction P� that was built in the first
step using H. The resulting eigenfunctions are then orthogonal. This is precisely the way the
orthogonal Jack superpolynomials J� have been obtained in [7].

Appendix B. Determinantal formulae for Jack polynomials in superspace

The explicit formulae for the Jack polynomials J� in superspace are written in terms of two
bases of P SN : the non-orthogonal set of eigenfunctions {J�}� and the monomial set {m�}�.
These formulae make use of two special orderings on superpartitions.

The first partial ordering is related to the action of a ladder operator S
()
ij on superpartitions.8

Its action, for i < j and  � 1, is defined as follows:

S
()
ij (�1, . . . , �i, . . . , �j , . . .) =

{
(�1, . . . , �i − , . . . , �j + , . . .) if �i > �j

(�1, . . . , �i + , . . . , �j − , . . .) if �j > �i.

(80)

8 The operator S
()
ij reads R

()
ij in [6].
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Note that the result is such as given only if

I : i, j ∈ {1, . . . , m} and �i−�j −1
2 � � 

II : i ∈ {1, . . . , m}, j ∈ {m + 1, . . . , N} and |�i − �j | − 1 � 

III : i, j ∈ {m + 1, . . . , N} and �i−�j

2 � � 

(81)

and otherwise, S
()
ij � = ∅. The s-ordering �s is defined by

� �s � iff � = S
(k)
ikjk

. . . S
(1)
i1j1

� (82)

for a given sequence of operators S
(1)
i1j1

, . . . , S
(k)
ikjk

.
Obviously, if � �s � then � � �, i.e., the s-ordering refines the dominance ordering.

The same property holds for the second ordering on superpartitions. It is defined using the
exchange operator Tij whose action on � = (. . . , �i, . . . , �j , . . .) is not influenced by the
semi-colon and is given by

Tij� =
{

(. . . , �j , . . . , �i, . . .) if �i > �j

(. . . ,�i, . . . , �j , . . .) otherwise.
(83)

The t-ordering �t is such that

� �t � iff � = Tikjk
. . . Ti1j1� (84)

for a given sequence of operators Ti1j1 , . . . , Tikjk
.

We are now in a position to give another definition of the Jack superpolynomials in
terms of the eigenvalue problem associated with two conserved operators of the stCMS
model: the supersymmetric Hamiltonian H2 and the operator I1 (which does not exist
in the non-supersymmetric case). Note that limβ→0 H2 = ∑

i (xi∂i)
2 while limβ→0 I1 =

(N − 1)!
∑

i (xi∂i)(θi∂θi
).

Definition 4 ([7]). The Jack polynomials J� in superspace are the unique functions in P SN

such that

I1J� = ε�J� and J� = J� +
∑
�<t�

u��(β)J� (85)

where the superpolynomials J� are the unique functions such that

H2J� = ε�J� and J� = m� +
∑

�<s�

v��(β)m�. (86)

The eigenvalues are given by

ε� = (N − 1)!
m∑

i=1

[λi − β(m(m − 1) + #�)] (87)

and

ε� =
N∑

i=1

[
�2

i + β(N + 1 − 2j)�
]

(88)

where m stands for the fermionic sector �, while #� stands for the number of pairs (i, j) such
that i ∈ {1, . . . , m}, j ∈ {m + 1, . . . , N} and �i < �j .
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We compute the coefficients u�� and v�� by means of determinantal formulae (cf [6, 7]).
These formulae are written in terms of coefficients a�� and b�� defined by the following
expressions:

H2m� = ε�m� +
∑

�<s�

a��(β)m� and I1J� = ε�J� +
∑
�<t�

b��(β,N)J�. (89)

The coefficient b�� reads

b�� =
{

(N − 1)!β sgn
(
σa

Tij �

)
n�s (�i) if � = Tij� for some i < j

0 otherwise.
(90)

The coefficient a��(β) is more elaborate. It is non-zero only if � can be obtained from

� by a single action of the ladder operator, namely if � = (�a;�s) = S
()
ij � , for a given S

()
ij

with  > 0, in which case it reads

a��(β) =



2β sgn
(
σa

S
()
ij �

)
(�i − �j − η)n(�i − ,�j + ) if �i > �j

2β sgn
(
σa

S
()
ij �

)
(�j − �i − η)n(�i + ,�j − ) if �j > �i

(91)

where sgn
(
σa

S
()
ij �

)
stands for the sign of the permutation σa

S
()
ij �

and η is given in (50).

Finally, the closed form expressions of the J� and the J� are contained in the following
two theorems.

Theorem 5 ([6]). Let �(1) ≺s �(2) ≺s · · · ≺s �(n) = �, where ≺s is a total ordering
compatible with <s . Then J� is given by the following determinant:

J� = E�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m�(1) m�(2) · · · · · · m�(n−1) m�(n)

ε�(1) − ε�(n) a�(2)�(1) · · · · · · a�(n−1)�(1) a�(n)�(1)

0 ε�(2) − ε�(n) · · · · · · a�(n−1)�(2) a�(n)�(2)

... 0
. . .

...
...

...
...

. . .
. . .

...

0 0 · · · 0 ε�(n−1) − ε�(n) a�(n)�(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(92)

where the constant of proportionality is

E� = (−1)n−1
n−1∏
i=1

1

ε�(i) − ε�(n)

. (93)

Theorem 6 ([7]). Let �(1) ≺t �(2) ≺t · · · ≺t �(n) = �, where ≺t is a total ordering
compatible with <t . Then J� is given by the following determinant:

J� = E�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J�(1) J�(2) · · · · · · J�(n−1) J�(n)

ε�(1) − ε�(n) b�(2)�(1) · · · · · · b�(n−1)�(1) b�(n)�(1)

0 ε�(2) − ε�(n) · · · · · · b�(n−1)�(2) b�(n)�(2)

... 0
. . .

...
...

...
...

. . .
. . .

...

0 0 · · · 0 ε�(n−1) − ε�(n) b�(n)�(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(94)

where the constant of proportionality is

E� = (−1)n−1
n−1∏
i=1

1

ε�(i) − ε�(n)

. (95)



1268 P Desrosiers et al

References

[1] Olshanetsky M A and Perelomov A M 1983 Quantum integrable systems related to Lie algebras Phys. Rep. 94
313

[2] Freedman D Z and Mende P F 1990 An exactly solvable N particle system in supersymmetric quantum mechanics
Nucl. Phys. B 344 317

[3] Sriram Shastry B and Sutherland B 1993 Superlax pairs and infinite symmetries in the 1/r2 system Phys. Rev.
Lett. 70 4029 (Preprint cond-mat/9212029)

Brink L, Hansson T H, Konstein S and Vasiliev M A 1993 The Calogero model: anyonic representation,
fermionic extension and supersymmetry Nucl. Phys. B 401 591 (Preprint hep-th/9302023)

[4] Ghosh P K 2001 Super-Calogero–Moser–Sutherland systems and free super-oscillators: a mapping Nucl. Phys.
B 595 519 (Preprint hep-th/0007208)

[5] Desrosiers P, Lapointe L and Mathieu P 2001 Supersymmetric Calogero–Moser–Sutherland models and Jack
superpolynomials Nucl. Phys. B 606 547 (Preprint hep-th/0103178)

[6] Desrosiers P, Lapointe L and Mathieu P 2003 Jack superpolynomials, superpartition ordering and determinantal
formulas Commun. Math. Phys. 233 383 (Preprint hep-th/0105107)

[7] Desrosiers P, Lapointe L and Mathieu P 2003 Jack polynomials in superspace Commun. Math. Phys. 242 331–60
(Preprint hep-th/0209074)

[8] Desrosiers P, Lapointe L and Mathieu P 2002 Supersymmetric Calogero–Moser–Sutherland models:
superintegrability structure and igenfunctions Proc. Workshop on Superintegrability in Classical and
Quantum Systems (CRM Series) ed P Winternitz (Berlin: Springer) (Preprint hep-th/0210190) at press

[9] Desrosiers P, Lapointe L and Mathieu P 2003 Generalized Hermite polynomials in superspace as eigenfunctions
of the supersymmetric rational CMS model Nucl. Phys. B (Preprint hep-th/0305038)
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